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Describe core data concepts (25—30%) 
 Describe ways to represent data  
• Describe features of structured data  
Normalised data 
Tables, Views, Primary Key, Foreign Keys, Joins, Schema cannot change 
Adheres to ACID. (Atomicity, Consistency, Isolation, Durability) 
Used for OLTP and OLAP 
SQL 
 
• Describe features of semi-structured  
Most do not adhere to ACID 
No complex structures, relations or indexes 
Easily scale up horizontally 
Fast to store (Iot) 
Slow to query 
Can replicate information geographically very fast 
Can get data loss in replicated databases 
No good at good for managing distributed transactions 
No standard interface for data manipulation 
 
• Describe features of unstructured data  

Collection of unrelated files that have no key or fields that can be searched (apart from 
meta data) 
 
Identify options for data storage  
• Describe common formats for data files  
Delimited text files 
JSON (JavaScript Object Notation) 
XML  
BLOB (Binary Large Object) 
Optimised File Format 9Columnar like Orc, Avro and Parquet) 
 
• Describe types of databases  
Relational 
 Good old SQL  
Non-Relational 
Key-value databases in which each record consists of a unique key and an associated value, which 
can be in any format. 

 



Document databases, which are a specific form of key-value database in which the value is a JSON 
document (which the system is optimized to parse and query) 

 
Column family databases, which store tabular data comprising rows and columns, but you can 
divide the columns into groups known as column-families. Each column family holds a set of columns 
that are logically related together. 

 
Graph databases, which store entities as nodes with links to define relationships between them. 

 
 
 

 
Describe common data workloads  
• Describe features of transactional workloads  
OLTP solutions rely on a database system in which data storage is optimized for both read and write 
operations in order to support transactional workloads in which data records are created, retrieved, 
updated, and deleted (often referred to as CRUD operations). These operations are applied 
transactionally, in a way that ensures the integrity of the data stored in the database. To accomplish 
this, OLTP systems enforce transactions that support so-called ACID semantics: 
Atomicity – each transaction is treated as a single unit, which succeeds completely or fails 
completely. For example, a transaction that involved debiting funds from one account and crediting 



the same amount to another account must complete both actions. If either action can't be 
completed, then the other action must fail. 
Consistency – transactions can only take the data in the database from one valid state to another. 
To continue the debit and credit example above, the completed state of the transaction must reflect 
the transfer of funds from one account to the other. 
Isolation – concurrent transactions cannot interfere with one another, and must result in a 
consistent database state. For example, while the transaction to transfer funds from one account to 
another is in-process, another transaction that checks the balance of these accounts must return 
consistent results - the balance-checking transaction can't retrieve a value for one account that 
reflects the balance before the transfer, and a value for the other account that reflects the 
balance after the transfer. 
Durability – when a transaction has been committed, it will remain committed. After the account 
transfer transaction has completed, the revised account balances are persisted so that even if the 
database system were to be switched off, the committed transaction would be reflected when it is 
switched on again. 
 
• Describe features of analytical workloads  
Analytical data processing typically uses read-only (or read-mostly) systems that store vast volumes 
of historical data or business metrics. Analytics can be based on a snapshot of the data at a given 
point in time, or a series of snapshots. 
The specific details for an analytical processing system can vary between solutions, but a common 
architecture for enterprise-scale analytics looks like this: 

 
Data files may be stored in a central data lake for analysis. 
An extract, transform, and load (ETL) process copies data from files and OLTP databases into a data 
warehouse that is optimized for read activity. Commonly, a data warehouse schema is based 
on fact tables that contain numeric values you want to analyse (for example, sales amounts), with 
related dimension tables that represent the entities by which you want to measure them (for 
example, customer or product), 
Data in the data warehouse may be aggregated and loaded into an online analytical processing 
(OLAP) model, or cube. Aggregated numeric values (measures) from fact tables are calculated for 
intersections of dimensions from dimension tables. For example, sales revenue might be totaled by 
date, customer, and product. 
The data in the data lake, data warehouse, and analytical model can be queried to produce reports, 
visualizations, and dashboards. 
Data lakes are common in large-scale data analytical processing scenarios, where a large volume of 
file-based data must be collected and analysed. 
Data warehouses are an established way to store data in a relational schema that is optimized for 
read operations – primarily queries to support reporting and data visualization. The data warehouse 



schema may require some denormalization of data in an OLTP data source (introducing some 
duplication to make queries perform faster). 
An OLAP model is an aggregated type of data storage that is optimized for analytical workloads. Data 
aggregations are across dimensions at different levels, enabling you to drill up/down to view 
aggregations at multiple hierarchical levels; for example to find total sales by region, by city, or for 
an individual address. Because OLAP data is pre-aggregated, queries to return the summaries it 
contains can be run quickly. 
Different types of user might perform data analytical work at different stages of the overall 
architecture. For example: 
Data scientists might work directly with data files in a data lake to explore and model data. 
Data Analysts might query tables directly in the data warehouse to produce complex reports and 
visualizations. 
Business users might consume pre-aggregated data in an analytical model in the form of reports or 
dashboards. 

 
Identify roles and responsibilities for data workloads  
• Describe responsibilities for database administrators  
Design, Implementation, Maintenance, Backups, Availability, Performance and Optimisation. 
Policies, Backup and Recovery plans 
Granting and Denying access to the database 
 
• Describe responsibilities for data engineers  
Design and Implement assets to ingest data via pipelines, cleansing and transformations. Wide range 
of data platforms for relation and non relational data. Responsible for data and privacy for all of the 
data. 
 
• Describe responsibilities for data analysts  
Maximise value of the data assets and builds models for analytical reports and visualisations for 
Insights 
 


